Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls.
نویسندگان
چکیده
The reorganization of the cellulose-xyloglucan matrix is proposed to serve as an important mechanism in the control of strength and extensibility of the plant primary cell wall. One of the key enzymes associated with xyloglucan metabolism is xyloglucan endotransglycosylase (XET), which catalyzes the endocleavage and religation of xyloglucan molecules. As with other plant species, XETs are encoded by a gene family in tomato (Lycopersicon esculentum cv T5). In a previous study, we demonstrated that the tomato XET gene LeEXT was abundantly expressed in the rapidly expanding region of the etiolated hypocotyl and was induced to higher levels by auxin. Here, we report the identification of a new tomato XET gene, LeXET2, that shows a different spatial expression and diametrically opposite pattern of auxin regulation from LeEXT. LeXET2 was expressed more abundantly in the mature nonelongating regions of the hypocotyl, and its mRNA abundance decreased dramatically following auxin treatment of etiolated hypocotyl segments. Analysis of the effect of several plant hormones on LeXET2 expression revealed that the inhibition of LeXET2 mRNA accumulation also occurred with cytokinin treatment. LeXET2 mRNA levels increased significantly in hypocotyl segments treated with gibberellin, but this increase could be prevented by adding auxin or cytokinin to the incubation media. Recombinant LeXET2 protein obtained by heterologous expression in Pichia pastoris exhibited greater XET activity against xyloglucan from tomato than that from three other species. The opposite patterns of expression and differential auxin regulation of LeXET2 and LeEXT suggest that they encode XETs with distinct roles during plant growth and development.
منابع مشابه
Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth.
An expansin gene, LeExp2, was isolated from auxin-treated, etiolated tomato (Lycopersicon esculentum cv T5) hypocotyls. LeExp2 mRNA expression was restricted to the growing regions of the tomato hypocotyl and was up-regulated during incubation of hypocotyl segments with auxin. The pattern of expression of LeExp2 was also studied during tomato fruit growth, a developmental process involving rapi...
متن کاملRCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl el...
متن کاملA gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination.
Xyloglucan endotransglycosylases (XETs) modify xyloglucans, major components of primary cell walls in dicots. A cDNA encoding an XET (LeXET4) was isolated from a germinating tomato (Lycopersicon esculentum Mill.) seed cDNA library. DNA gel blot analysis showed that LeXET4 is a single-copy gene in the tomato genome. LeXET4 mRNA was strongly expressed in germinating seeds, was much less abundant ...
متن کاملCytokinin inhibits a subset of diageotropica-dependent primary auxin responses in tomato.
Many aspects of plant development are regulated by antagonistic interactions between the plant hormones auxin and cytokinin, but the molecular mechanisms of this interaction are not understood. To test whether cytokinin controls plant development through inhibiting an early step in the auxin response pathway, we compared the effects of cytokinin with those of the dgt (diageotropica) mutation, w...
متن کاملArabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase.
Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We identified TCH4 as a xyloglucan endotransg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 127 3 شماره
صفحات -
تاریخ انتشار 2001